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Abstract—This paper describes the development of a proof-
of-concept sample verification system (SVS) for in-situ 
mass measurement of planetary rock and soil sample in 
future robotic sample return missions.  Our proof-of-concept 
SVS device contains a 10 cm diameter pressure sensitive 
elastic membrane placed at the bottom of a sample canister. 
The membrane deforms under the weight of accumulating 
planetary sample. The membrane is positioned in proximity 
to an opposing substrate with a narrow gap. The 
deformation of the membrane makes the gap to be narrower, 
resulting in increased capacitance between the two nearly 
parallel plates. Capacitance readout circuitry on a nearby 
printed circuit board (PCB) transmits data via a low-voltage 
differential signaling (LVDS) interface. The fabricated SVS 
proof-of-concept device has successfully demonstrated 
approximately 1pF/gram capacitance change.1, 2   
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1. INTRODUCTION 

In previous human lunar sample return missions (Apollo 11, 
12, 14, 15, 16 and 17), astronauts were able to ascertain the 
quantity of lunar samples before returning to Earth.  Robust 
in-situ sample acquisition verification (assured sample 
quantity (mass or volume)) systems would be critical to the 
next generation NASA robotic sample return missions. For 
sample return missions the Sample Transfer Chain (STC) 
would be responsible for the acquisition, verification, 
containment and transfer of the sample from the planetary 
body to the surface of the Earth. A key mission success 
criterion for robotic sample return missions would be that an 
assured sample quantity has been collected before the Earth-
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return phase of the mission is initiated. For some robotic 
sample return missions sample acquisition verification must 
be done autonomously without ground in the loop of 
operations. 
 
There is a technology gap for sample acquisition 
verification systems for robotic sample return missions. 
NASA's Genesis and Stardust robotic sample return 
missions successfully returned samples to Earth without an 
in-situ sample acquisition verification system (SVS) on 
board the spacecraft [1,2]. Positive confirmation of 
successful sample acquisition and transfer was done after 
the return of the sample capsule to Earth. These two 
missions are an exception because of the types of sample 
they acquired, no direct interaction with the target body was 
required and sample acquisition time was in order of several 
minutes. JAXA's Hayabusa mission also did not have an in-
situ sample acquisition verification system; as a result, 
positive confirmation of successful sample acquisition and 
transfer could only be done after the return of the sample 
capsule to Earth [3]. The approach of providing positive 
confirmation of successful sample acquisition and transfer 
for robotic sample return missions after the return of the 
sample capsule to Earth is less than ideal since the ultimate 
goal of a sample return mission is to return an assured 
sample quantity (threshold science) to Earth. 
 
This point argues for additional technology development for 
future sample acquisition verification systems for potential 
robotic sample return missions. In this paper, we present a 
novel in-situ SVS that is designed for integrated sampling 
systems that could survive and operate in challenging 
environments (extremes in temperature, pressure, gravity, 
vibration and thermal cycling) for real-time in-situ sample 
acquisition verification. The in-situ SVS would enable the 
unmanned spacecraft system to re-attempt the sample 
acquisition procedures until the capture of desired sample 
quantity is positively confirmed, thereby maximizing the 
prospect for scientific reward. 
 

2. BACKGROUND 

The primary objective of a sample return mission is 
retrieving pristine planetary sample without contamination. 
Spacecraft systems including the SVS must be designed so 
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silicon and vacuum electronic devices for THz applications.  
Since 2005, he has been leading the Nano and Micro 
Systems (NAMS) group at JPL and has developed carbon 
nanotube field emitters, nanoelectronic devices, miniature 
spectroscopic instruments, and MEMS for space, defense, 
medical, and commercial applications. 
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